Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture Importance Sampling (IMIS)
نویسندگان
چکیده
This article proposes a method for approximating integrated likelihoods in finite mixture models. We formulate the model in terms of the unobserved group memberships, z, and make them the variables of integration. The integral is then evaluated using importance sampling over the z. We propose an adaptive importance sampling function which is itself a mixture, with two types of component distributions, one concentrated and one diffuse. The more concentrated type of component serves the usual purpose of an importance sampling function, sampling mostly group assignments of high posterior probability. The less concentrated type of component allows for the importance sampling function to explore the space in a controlled way to find other, unvisited assignments with high posterior probability. Components are added adaptively, one at a time, to cover areas of high posterior probability not well covered by the current importance sampling function. The method is called incremental mixture importance sampling (IMIS). IMIS is easy to implement and to monitor for convergence. It scales easily for higher dimensional mixture distributions when a conjugate prior is specified for the mixture parameters. The simulated values on which the estimate is based are independent, which allows for straightforward estimation of standard errors. The self-monitoring aspects of the method make it easier to adjust tuning parameters in the course of estimation than standard Markov chain Monte Carlo algorithms. With only small modifications to the code, one can use the method for a wide variety of mixture distributions of different dimensions. The method performed well in simulations and in mixture problems in astronomy and medical research.
منابع مشابه
C01\lPUTING NORJ.\tIALIZING CONSTANTS FOR FINITE MIXTURE MODELS VIA INCRElVlENTAL MIXTURE IMPORTANCE SAlVIPLING
We propose a method for approximating integrated likelihoods in finite mixture models. We formulate the model in terms of the unobserved group memberships, z, and make them the variables of integration. The integral is then evaluated using importance sampling over the z. We propose an adaptive importance sampling function which is itself a mixture, with two types of component distributions, one...
متن کاملEasy Computatioll of Bayes Factors arid Normalizing Constants for Mixture Models via Mixture Importance Sampling
vVe propose a method for approximating integrated likelihoods, or posterior normalizing constants, in finite mixture models, for which analytic approximations such as the Laplace method are invalid. Integrated likelihoods are key components of Bayes factors and of the posterior model probabilities used in Bayesian model averaging. The method starts by formulating the model in terms of the unobs...
متن کاملEstimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance Sampling.
The Joint United Nations Programme on HIV/AIDS (UNAIDS) has decided to use Bayesian melding as the basis for its probabilistic projections of HIV prevalence in countries with generalized epidemics. This combines a mechanistic epidemiological model, prevalence data, and expert opinion. Initially, the posterior distribution was approximated by sampling-importance-resampling, which is simple to im...
متن کاملBayesian Nonparametric Estimation of a Unimodal Density via Two S-paths 1
A Bayesian nonparametric method for unimodal densities on the real line is provided by considering a class of species sampling mixture models containing random densities that are unimodal and not necessarily symmetric. This class of densities generalize the model considered by Brunner (1992), in which the Dirichlet process is replaced by a more general class of species sampling models. A novel ...
متن کاملImproved Estimation of Normalizing Constants From Markov Chain Monte Carlo Output
Normalizing constants of conditional distributions include Bayesian marginal likelihoods and likelihoods of mixture models, such as hierarchical models and state-space time-series models. A promising method for estimating such quantities was proposed by Chib and Jeliazkov (CJ) and improved by Mira and Nicholls using bridge sampling results. Here three additional improvements and one theoretical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006